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ABSTRACT

We introduce a few-shot learning framework for error de-
tection. We show that data augmentation (a form of weak
supervision) is key to training high-quality, ML-based error
detection models that require minimal human involvement.
Our framework consists of two parts: (1) an expressive model
to learn rich representations that capture the inherent syn-
tactic and semantic heterogeneity of errors; and (2) a data
augmentation model that, given a small seed of clean records,
uses dataset-specific transformations to automatically gen-
erate additional training data. Our key insight is to learn
data augmentation policies from the noisy input dataset in
a weakly supervised manner. We show that our framework
detects errors with an average precision of ~94% and an av-
erage recall of ~93% across a diverse array of datasets that
exhibit different types and amounts of errors. We compare
our approach to a comprehensive collection of error detec-
tion methods, ranging from traditional rule-based methods
to ensemble-based and active learning approaches. We show
that data augmentation yields an average improvement of
20 F; points while it requires access to 3x fewer labeled
examples compared to other ML approaches.
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1 INTRODUCTION

Error detection is a natural first step in every data analysis
pipeline [31, 44]. Data inconsistencies due to incorrect or
missing data values can have a severe negative impact on the
quality of downstream analytical results. However, identify-
ing errors in a noisy dataset can be a challenging problem.
Errors are often heterogeneous and exist due to a diverse
set of reasons (e.g., typos, integration of stale data values, or
misalignment), and in many cases can be rare. This makes
manual error detection prohibitively time consuming.

Several error detection methods have been proposed in the
literature to automate error detection [17, 20, 31, 48]. Most
of the prior works leverage the side effects of data errors to
solve error detection. For instance, many of the proposed
methods rely on violations of integrity constraints [31] or
value-patterns [33] or duplicate detection [18, 43] and outlier
detection [16, 47, 61] methods to identify erroneous records.
While effective in many cases, these methods are tailored to
specific types of side effects of erroneous data. As a result,
their recall for identifying errors is limited to errors corre-
sponding to specific side effects (e.g., constraint violations,
duplicates, or attribute/tuple distributional shifts) [2].

One approach to address the heterogeneity of errors and
their side effects is to combine different detection methods
in an ensemble [2]. For example, given access to different
error detection methods, one can apply them sequentially or
can use voting-based ensembles to combine the outputs of
different methods. Despite the simplicity of ensemble meth-
ods, their performance can be sensitive to how different
error detectors are combined [2]. This can be either with re-
spect to the order in which different methods are used or the
confidence-level associated with each method. Unfortunately,
appropriate tools for tuning such ensembles are limited, and
the burden of tuning these tools is on the end-user.

A different way to address heterogeneity is to cast error
detection as a machine learning (ML) problem, i.e., a binary
classification problem: given a dataset, classify its entries as
erroneous or correct. One can then train an ML model to
discriminate between erroneous and correct data. Beyond
automation, a suitably expressive ML model should be able
to capture the inherent heterogeneity of errors and their
side effects and will not be limited to low recall. However,
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the end-user is now burdened with the collection of enough
labeled examples to train such an expressive ML model.

1.1 Approach and Technical Challenges

We propose a few-shot learning framework for error detec-
tion based on weak supervision [52, 54], which exploits nois-
ier or higher-level signals to supervise ML systems. We start
from this premise and show that data augmentation [45, 62],
a form of weak supervision, enables us to train high-quality
ML-based error detection models with minimal human in-
volvement.

Our approach exhibits significant improvements over a
comprehensive collection of error detection methods: we
show that our approach is able to detect errors with an aver-
age precision of ~94% and an average recall of ~93%, obtaining
an average improvement of 20 F; points against competing
error detection methods. At the same time, our weakly super-
vised methods require access to 3x fewer labeled examples
compared to other ML approaches. Our ML-approach also
needs to address multiple technical challenges:

e [Model] The heterogeneity of errors and their side
effects makes it challenging to identify the appropri-
ate statistical and integrity properties of the data that
should be captured by a model in order to discriminate
between erroneous and correct cells. These properties
correspond to attribute-level, tuple-level, and dataset-
level features that describe the distribution governing
a dataset. Hence, we need an appropriately expres-
sive model for error detection that captures all these
properties (features) to maximize recall.

e [Imbalance] Often, errors in a dataset are limited.
ML algorithms tend to produce unsatisfactory classi-
fiers when faced with imbalanced datasets. The fea-
tures of the minority class are treated as noise and
are often ignored. Thus, there is a high probability of
misclassification of the minority class as compared to
the majority class. To deal with imbalance, one needs
to develop strategies to balance classes in the training
data. Standard methods to deal with the imbalance
problem such as resampling can be ineffective due
to error heterogeneity as we empirically show in our
experimental evaluation.

o [Heterogeneity] Heterogeneity amplifies the imbal-
ance problem as certain errors and their side effects
can be underrepresented in the training data. Resam-
pling the training data does not ensure that errors with
different properties are revealed to the ML model dur-
ing training. While active learning can help counteract
this problem in cases of moderate imbalance [8, 19],
it tends to fail in the case of extreme imbalance [26]
(as in the case of error detection). This is because the
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lack of labels prevents the selection scheme of active
learning from identifying informative instances for
labeling [26]. Different methods that are robust to ex-
treme imbalance are needed.

A solution that addresses the aforementioned challenges
needs to: (1) introduce an expressive model for error de-
tection, while avoiding explicit feature engineering; and
(2) propose novel ways to handle the extreme imbalance
and heterogeneity of data in a unified manner.

1.2 Contributions and Organization

To obviate the need for feature engineering we design a repre-
sentation learning framework for error detection. To address
the heterogeneity and imbalance challenges we introduce
a data augmentation methodology for error detection. We
summarize the main contributions as follows:

e We introduce a template ML-model to learn a represen-
tation that captures attribute-, tuple-, and dataset-level
features that describe a dataset. We demonstrate that
representation learning obviates the need for feature
engineering. Finally, we show via ablation studies that
all granularities need to be captured by error detection
models to obtain high-quality results.

e We show how to use data augmentation to address
data imbalance. Data augmentation proceeds as fol-
lows: Given a small set of labeled data, it allows us to
generate synthetic examples or errors by transforming
correct examples in the available training data. This
approach minimizes the amount of manually labeled
examples required. We show that in most cases a small
number of labeled examples are enough to train high-
quality error detection models.

e We present a weakly supervised method to learn data
transformations and data augmentation policies (i.e.,
the distribution over those data transformation) di-
rectly from the noisy input dataset. The use of differ-
ent transformations during augmentation provides us
with examples that correspond to different types of er-
rors, which enables us to address the aforementioned
heterogeneity challenge.

The remainder of the paper proceeds as follows: In Sec-
tion 2 we review background concepts. Section 3 provides
an overview of our weak supervision framework. In Sec-
tion 4, we introduce our representation learning approach
to error detection. In Section 5, we establish a data augmen-
tation methodology for error detection, and in Section 6, we
evaluate our proposed solutions. We discuss related work in
Section 7 and summarize key points of the paper in Section 8.
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2 BACKGROUND

We review basic background material for the problems and
techniques discussed in this paper.

2.1 Error Detection

The goal of error detection is to identify incorrect entries in a
dataset. Existing error detection methods can be categorized
in three main groups: (1) Rule-based methods [12, 15] rely
on integrity constraints such as functional dependencies and
denial constraints, and suggest errors based on the viola-
tions of these rules. Denial Constraints (DCs) are first order
logic formulas that subsume several types of integrity con-
straints [10]. Given a set of operators B = {=, <, >, #, <, =},
with ~ denoting similarity, DCs take the form V¢;,t; € D :
=(Py A -+ APg A--- A Pg) where D is a dataset with at-
tributes A = {A;, A, ..., AN}, t; and t; are tuples, and each
predicate Py is of the form (¢;[A,] op tj[An]) or (t;[A.] op )
where A,, A, € A, a is a constant and op € B. (2) Pattern-
driven methods leverage normative syntactic patterns and
identify erroneous entries such as those that do not con-
form with these patterns [33]. (3) Quantitative error detec-
tion focuses on outliers in the data and declares those to be
errors [28]. A problem related to error detection is record
linkage [17, 18, 43], which tackles the problem of identifying
if multiple records refer to the same real-world entity. While
it can also be viewed as a classification problem, it does not
detect errors in the data and is not the focus of this paper.

2.2 Data Augmentation

Data augmentation is a form of weak supervision [54] and
refers to a family of techniques that aim to extend a dataset
with additional data points. Data augmentation is typically
applied to training data as a way to reduce overfitting of
models [62]. Data augmentation methods typically consist
of two components: (1) a set of data transformations that
take a data point as input and generate an altered version of
it, and (2) an augmentation policy that determines how dif-
ferent transformations should be applied, i.e., a distribution
over different transformations. Transformations are typi-
cally specified by domain experts while policies can be either
pre-specified [45] or learned via reinforcement learning or
random search methods [14, 53]. In contrast to prior work,
we show that for error detection both transformations and
policies can be learned directly from the data.

2.3 Representation Learning

The goal of representation learning is to find an appropriate
representation of data (i.e., a set of features) to perform a ma-
chine learning task [5]. In our error detection model we build
upon three standard representation learning techniques:
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Neural Networks Representation learning is closely related
to neural networks [24]. The most basic neural network takes
as input a vector x and performs an affine transformation
of the input wx + b. It also applies a non-linear activation
function o (e.g., a sigmoid) to produce the output o(wx +
b). Multiple layers can be stacked together to create more
complex networks. In a neural network, each hidden layer
maps its input data to an internal representation that tends
to capture a higher level of abstraction.

Highway Neural Networks Highway Networks, adapt the
idea of having “shortcut” gates that allow unimpeded infor-
mation to flow across non-consecutive layers [58]. Highway
Networks are used to improve performance in many domains
such as speech recognition [63] and language modeling [35],
and their variants called Residual networks have been useful
for many computer vision problems [27]

Distributed Representations Distributed representations
of symbolic data [29] were first used in the context of statisti-
cal language model [6]. The goal here is to learn a mapping of
atoken (e.g., a word) to a vector of real numbers, called a word
embedding. Methods to generate these mappings include neu-
ral networks [40], dimensionality reduction techniques such
as PCA [38], and other probabilistic techniques [22].

3 FRAMEWORK OVERVIEW

We formalize the problem of error detection and provide an
overview of our solution to error detection.

3.1 Problem Statement

The goal of our framework is to identify erroneous entries
in a relational dataset D. We denote A = {A,As,...,AN}
the attributes of D. We follow set semantics and consider
D to be a set of tuples. Each tuple t € D is a collection of
cells C; = {t[A1],t[Az], ..., t[AN]} where {[A;] denotes the
value of attribute A; for tuple ¢t. We use Cp to denote the
set of cells contained in D. The input dataset D can also
be accompanied by a set of integrity constraints X, such as
Denial Constraints as described in Section 2.1.

We assume that errors in D appear due to inaccurate cell
assignments. More formally, for a cell ¢ in Cp we denote
by v its unknown true value and v, its observed value. We
define an errorin D to be each cell ¢ with v, # v;. We define
a training dataset T to be a set of tuples T = {(c, v, v})}cecy
where Cr C Cp. T provides labels (i.e., correct or erroneous)
for a subset of cells in D. We also define a variable E. for
each cell ¢ € Cp with E; = —1 indicating that the cell is
erroneous and with E; = 1 indicating that the cell is correct.
For each E. we denote e its unknown true assignment.

Our goal is stated as follows: given a dataset D and a
training dataset T find the most probable assignment é to
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Figure 1: Overview of Error Detection with Augmentation.

each variable E. with ¢ € Cp \ Cr. We say that a cell is
correctly classified as erroneous or correct when é. = e;.

3.2 Model Overview

Prior models for error detection focus on specific side effects
of data errors. For example, they aim to detect errors by
using only the violations of integrity constraints or aim to
identify outliers with respect to the data distribution that
are introduced due to errors. Error detectors that focus on
specific side effects, such as the aforementioned ones, are not
enough to detect errors with a high recall in heterogeneous
datasets [3]. This is because many errors may not lead to
violations of integrity constraints, nor appear as outliers in
the data. We propose a different approach: we model the
process by which the entries in a dataset are generated, i.e.,
we model the distribution of both correct and erroneous data.
This approach enables us to discriminate better between
these two types of data.

We build upon our recent Probabilistic Unclean Databases
(PUDs) framework that introduces a probabilistic framework
for managing noisy relational data [56]. We follow the ab-
stract generative model for noisy data from that work, and
introduce an instantiation of that model to represent the
distribution of correct and erroneous cells in a dataset.

We consider a noisy channel model for databases that pro-
ceeds in two steps: First, a clean database is sampled from a
probability distribution I*. Distribution I* captures how val-
ues within an attribute and across attributes are distributed
and also captures the compatibility of different tuples (i.e., it
ensures that integrity constraints are satisfied). To this end,
distribution I* is defined over attribute-, tuple-, and dataset-
level features of a dataset. Second, given a clean database
sampled by I*, errors are introduced via a noisy channel
that is described by a conditional probability distribution
R*. Given this model, I* characterizes the probability of the
unknown true value P(v}) of a cell ¢ and R* characterizes
the conditional probability P(v.|v;) of its observed value.

Distribution I" is such that errors in dataset D lead to low
probability instances. For example, I* assigns zero probability
to datasets with entries that lead to constraint violations.
The goal is to learn a representation that captures the
distribution of the correct cells (I*) and how errors are intro-
duced (R*). Our approach relies on learning two models:

(1) Representation Model We learn a representation model Q
that approximates distribution I* on the attribute, record, and
dataset level. We require that Q is such that the likelihood
of correct cells given Q will be high, while the likelihood of
erroneous cells given Q is low. This property is necessary for
a classifier M to discriminate between correct and erroneous
cells when using representation Q. We rely on representation
learning techniques to learn Q jointly with M.

(2) Noisy Channel We learn a generative model H that ap-
proximates distribution R*. This model consists of a set of
transformations ® and a policy I1. Each transformation ¢ € ®
corresponds to a function that takes as input a cell ¢ and trans-
forms its original value v, to a new value v, i.e., ¢(v¢) = ;.
Policy II is defined as a conditional distribution P(®|v.). As
we describe next, we use this model to generate training
data—via data augmentation—for learning Q and M.

We now present the architecture of our framework. The
modules described next are used to learn the noisy channel
H, perform data augmentation by using H, and learn the
representation model Q jointly with a classifier M that is
used to detect errors in the input dataset.

3.3 Framework Overview

Our framework takes as input a noisy dataset D, a training
dataset T, and (optionally) a set of denial constraints 3. To
learn H, Q, and M from this input we use three core modules:

Module 1: Data Augmentation This module learns the
noisy channel H and uses it to generate additional training
examples by transforming some of the labeled examples in
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Figure 2: (A) A diagram of the representation model Q. Models associated learnable layers that are jointly trained
with classifier M. (B) Architecture diagram of the learnable layers in Q. (C) The architecture of classifier M.

T. The output of this module is a set of additional examples
Ty . The operations performed by this module are:

(1) Transformation and Policy Learning: The goal here is to
learn the set of transformations ® and the policy II that
follow the data distribution in D. We introduce a weakly
supervised algorithm to learn ® and II. This algorithm is
presented in Section 5.

(2) Example Generation: Given transformations ® and policy
I1, we generate a set of new training examples Ty that is
combined with T to train the error detection model. To ensure
high-quality training data, this part augments only cells that
are marked correct in T. Using this approach, we obtain a
balanced training set where examples of errors follow the
distribution of errors in D. This is because transformations
are chosen with respect to policy IT which is learned from D.

Module 2: Representation This module combines different
representation models to form model Q. Representation Q
maps a cell values v, to to a fixed-dimension real-valued
vector f. € R?. To obtain f. we concatenate the output
of different representation models, each of which targets a
specific context (i.e., attribute, tuple, or dataset context).

We allow a representation model to be learned during
training, and thus, the output of a representation model
can correspond to a vector of variables (see Section 4). For
example, the output of a representation model can be an
embedding u. obtained by a neural network that is learned
during training or may be fixed to the number of constraint
violations value v, participates in.

Module 3: Model Training and Classification This mod-
ule is responsible for training a classifier M that given the
representation of a cell value determines if it is correct or

erroneous, i.e., M : R¢ — {“correct” (+1), “error (-1)”}. Dur-
ing training, the classifier is learned by using both the initial
training data T and the augmentation data T4. At prediction
time, the classifier M takes as input the cell value represen-
tation for all cells in D \ T and assigns them a label from
{“correct”, “error”} (see Section 4).

An overview of how the different modules are connected
is shown in Figure 1. First, Module 1 learns transformations
® and policy I1. Then, Module 2 grounds the representation
model Q of our error detection model. Subsequently, Q is con-
nected with the classifier model M in Module 3 and trained
jointly. The combined model is used for error detection.

4 REPRESENTATIONS OF DIRTY DATA

We describe how to construct the representation model Q
(see Section 3.2). We also introduce the classifier model M,
and describe how we train Q and M.

4.1 Representation Models

To approximate the data generating distribution I*, the model
Q needs to capture statistical characteristics of cells with re-
spect to attribute-level, tuple-level, and dataset-level contexts.
An overview of model Q is shown in Figure 2(A). As shown,
Q is formed by concatenating the outputs of different models.
Next, we review the representation models we use for each of
the three contexts. The models introduced next correspond
to a bare-bone set that captures all aforementioned contexts,
and is currently implemented in our prototype. More details
on our implementation are provided in Appendix A.1. Our
architecture can trivially accommodate additional models or
more complex variants of the current models.

Attribute-level Representation: Models for this context
capture the distributions governing the values and format
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for an attribute. Separate models are used for each attribute
Aj; in dataset D. We consider three types of models: (1) Char-
acter and token sequence models that capture the probability
distribution over sequences of characters and tokens in cell
values. These models correspond to learnable representa-
tion layers. Figure 2(B) shows the deep learning architecture
we used for learnable layers. (2) Format models that capture
the probability distribution governing the format of the at-
tribute. In our implementation, we consider an n-gram model
that captures the format sequence over the cell value. Each
n-gram is associated with a probability that is learned di-
rectly from dataset D. The probabilities are aggregated to a
fixed-dimension representation by taking the probabilities
associated with the least-k probable n-grams. (3) Empirical
distribution models that capture the empirical distribution
of the attribute associated with a cell. These can be learned
directly from the input dataset D. The representation here is
a scalar that is the empirical probability of the cell value.

Tuple-level Representation: Models for this context cap-
ture the joint distribution of different attributes. We consider
two types of models: (1) Co-occurrence models that capture
the empirical joint distribution over pairs of attributes. (2) A
learnable tuple representation, which captures the joint distri-
bution across attributes given the observed cell value. Here,
we first obtain an embedding of the tuple by following stan-
dard techniques based on word-embedding models [7]. These
embeddings are passed through a learnable representation
layer (i.e., a deep network) that corresponds to an additional
non-linear transform (see Figure 2(B)). For co-occurrence,
we learn a single representation for all attributes. For tuple
embeddings, we learn a separate model per attribute.

Dataset-level Representation: Models for this context cap-
ture a distribution that governs the compatibility of tuples
and values in the dataset D. We consider two types of models:
(1) Constraint-based models that leverage the integrity con-
straints in ¥ (if given) to construct a representation model
for this context. Specifically, for each constraint o € ¥ we
compute the number of violations associated with the tuple
of the input cell. (2) A neighborhood-based representation of
each cell value that is informed by a dataset-level embed-
ding of D transformed via a learnable layer. Here, we train a
standard word-embedding model where each tuple in D is
considered to be a document. To ensure that the embeddings
are not affected by the sequence of values across attributes
we extend the context considered by word-embeddings to be
the entire tuple and treat the tuple as a bag-of-words. These
embeddings are given as input to a learnable representation
layer that follows the architecture in Figure 2(B).

The outputs of all models are concatenated into a single
vector that is given as input to Classifier M. Learnable layers
are trained jointly with M. To achieve high-quality error
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detection, features from all contexts need to be combined
to form model Q. In Section 6, we present an ablation study
which demonstrates that all features from all types of con-
texts are necessary to achieve high-quality results.

4.2 Error Classification

The classifier M of our framework corresponds to a two-layer
fully-connected neural network, with a ReLU activation layer,
and followed by a Softmax layer. The architecture of M is
shown in Figure 2(C). Given the modular design of our ar-
chitecture, Classifier M can be easily replaced with other
models. Classifier M is jointly trained with the representa-
tion model Q by using the training data in T and the data
augmentation output Ty. We use ADAM [36] to train our
end-to-end model.

More importantly, we calibrate the confidence of the pre-
dictions of M using Platt Scaling [25, 46] on a holdout-set
from the training data T (i.e., we keep a subset of T for cal-
ibration). Platt Scaling proceeds as follows: Let z; be the
score for class i output by M. This score corresponds to
non-probabilistic prediction. To convert it to a calibrated
probability, Platt Scaling learns scalar parameters a,b € R
and outputs §; = o(az; + b) as the calibrated probability
for prediction z;. Here, o denotes the sigmoid function. Pa-
rameters a and b are learned by optimizing the negative
log-likelihood loss over the holdout-set. It is important to
note that the parameters of M and Q are fixed at this stage.

5 DATA AUGMENTATION LEARNING

Having established a representation model Q for the data
generating distribution I*, we now move to modeling the
noisy channel distribution R*. We assume the noisy channel
can be specified by a set of transformation functions ® and
a policy II (i.e., a conditional distribution over ® given a cell
value). Our goal is to learn ® and IT from few example errors
and use it to generate training examples to learn model Q.

5.1 Noisy Channel Model

We aim to limit the number of manually labeled data required
for error detection. Hence, we consider a simple noisy chan-
nel model that can be learned from few and potentially noisy
training data. Our noisy channel model treats cell values
as strings and introduces errors to a clean cell value v* by
applying a transformation ¢ to obtain a new value v = ¢(v").
We consider that each function ¢ € ® belongs to one of the
following three templates:

e Add characters: @ +— [a — z]*

e Remove characters: [a — z]" +— @

e Exchange characters: [a — z]* +— [a — z]* (the left
side and right side are different)
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Given these templates, we assume that the noisy channel
model introduces errors via the following generative process:
Given a clean input value v*, the channel samples a transfor-
mation ¢ from a conditional distribution II(v*) = P(®|v*),
ie., ¢ ~ II(v*) and applies ¢ once to a substring or position
of the input cell value. We refer to II as a policy. If the trans-
formation ¢ can be applied to multiple positions or multiple
substrings of v* one of those positions or strings is selected
uniformly at random.

For example, to transform Zip Code “60612” to “606152”,
the noisy channel model we consider can apply the exchange
character function T : 60612 — 606152, i.e., exchange the
entire string. Applying the exchange function on the entire
cell value can capture misaligned attributes or errors due
to completely erroneous values. However, the same trans-
formed string can also be obtained by applying either the
exchange character function T : 12 — 152 on the ‘12’ sub-
string of “60612” or the add character function T : @ + 5,
where the position between ‘1’ and ‘2’ in “60612” was chosen
at random. The distribution that corresponds to the afore-
mentioned generative process dictates the likelihood of each
of the above three cases.

Given ® and II, we can use this noisy channel on training
examples that correspond to clean tuples to augment the
available training data. However, both ® and IT have to be
learned from the limited number of training data. This is why
we adopt the above simple generative process. Despite its
simplicity, we find our approach to be effective during data
augmentation (see Section 6). Next, we introduce algorithms
to learn @ and IT assuming access to labeled pairs of correct
and erroneous values L = {(v*,v)} with v # v*. We then
discuss how to construct L either by taking a subset of the
input training data T or, in the case of limited training data,
via an unsupervised approach over dataset D. Finally, we
describe how to use ® and IT to perform data augmentation.

5.2 Learning Transformations

We use a pattern matching approach to learn the transforma-
tions ®. We follow a hierarchical pattern matching approach
to identify all different transformations that are valid for
each example in L. For example, for (60612, 6061x2) we want
to extract the transformations {60612 — 6061x2,12 +—
1x2,@ +— x}. The approach we follow is similar to the
Ratcliff-Obershelp pattern recognition algorithm [51]. Due
to the generative model we described above, we are agnostic
to the position of each transformation.

The procedure is outlined in Algorithm 1. Given an exam-
ple (v*, v) from L, it returns a list of valid transformations ®,
extracted from the example. The algorithm first extracts the
string level transformation T : v* + v, and then proceeds
recursively to extract additional transformations from the
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substrings of v* and v. To form the recursion, we identify the
longest common substring of v* and v, and use that to split
each string into its prefix (denoted by lv*) and its postfix
(denoted by rv*). Given the prefix and the postfix substrings,
we recurse on the combination of substrings that have the
maximum similarity (i.e., overlap). We compute the overlap
of two strings as 2 = C/S, where C is the number of common
characters in the two strings, and S is the sum of their lengths.
Finally, we remove all identity (i.e., trivial) transformations
from the output ®.. To construct the set of transformations
®, we take the set-union of all lists ®, generated by applying
Algorithm 1 to each entry e € L.

Algorithm 1: Transformation Learning (TL)

Input: Example e = (v*, v) of a correct string and its
corresponding erroneous string
Output: A list of valid transformations ®, for example e
1 ifv* =@andov = @ return 0 ;
2 O «— [0" > v];
3 | « Longest Common Substring(v*, v);
4 0%, rv* « v* \ I /* Generate left and right substrings */;
5 lu,ro—o\[;
6 if similarity(lv*,lv) + similarity(ro*, rv) >
similarity(lv*, rv) + similarity(rv*,lv) then
7 Add [[v* +— v, rv* +— ro] in ®;
Add [TL(Iv*, lv), TL(rv*, rv)] in ®;
9 else
Add [lv* V> ro, rv* +— [v] in ®;
Add [TL(lv*, rv), TL(rv*, lv)] in ®;

10

11

12 end
13 Remove all identity transformations from ®;
14 return O,

5.3 Policy Learning

The set of transformations ® extracted by Algorithm 1 cor-
respond to all possible alterations our noisy channel model
can perform on a clean dataset. Transformations in ¢ range
from specialized transformations for specific entries (e.g.,
60612 > 6061x2) to generic transformations, such as @ +—
x, that can be applied to any position of any input. Given @,
the next step is to learn the transformation policy I, i.e., the
conditional probability distribution II(v) = P(®|v) for any
input value v. We next introduce an algorithm to learn II.
We approximate II via a two-step process: First, we com-
pute the empirical distribution of transformations informed
by the transformation lists output by Algorithm 1. This pro-
cess is described in Algorithm 2. Second, given an input
string v, we find all transformations str — str’ in ® such
that str is a subset of v. Let ®,, C ® be the set of such transfor-
mations. We obtain a distribution P(®,|v) by re-normalizing
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Algorithm 2: Empirical Transformation Distribution

Input: A set of identified transformation lists {®¢ }eer,
Output: Empirical Distribution IT
1 @ « Set of unique transformations in {®, }eer;
2 ¢ « Y, (element count of ®,);
3 for ¢ € & do
4 ¢ < number of times ¢ appears in {®e}eer;
Co
5 p(P) — &

6 end

return {p(¢)}¢co

N

the empirical probabilities from the first step. This process
is outlined in Algorithm 3. Recall that we choose this simple
model for IT as the number of data points in L can be limited.

Algorithm 3: Approximate Noisy Channel Policy

Input: An empirical transformation 11 over transformations ®;
A string v
Output: Conditional Distribution (v) = P(®|v)
1 I1(v) « o;
2 &, < Subset of transformations str — str’ in ® such that
str is a substring of v;
3 total mass «— Y gco, ﬁ(¢);
4 for ¢ € &, do

()] — L&)

total mass ®

o

¢ end
return I1(v)

=

5.4 Generating Transformation Examples

We describe how to obtain examples (v*, v) to form the set L,
which we use in learning the transformations ® (Section 5.2)
and the policy IT (Section 5.3). First, any example in the train-
ing data T that corresponds to an error can be used. However,
given the scarcity of errors in some datasets, examples of
errors can be limited. We introduce a methodology based on
weak-supervision to address this challenge.

We propose a simple unsupervised data repairing model
Mp over dataset D and use its predictions to obtain transfor-
mation examples (v*, v). We form examples (v*,v) = (0, v)
with 9 # v by taking an original cell value v and the repair
0 suggested by Mg. We only require that this model has rela-
tively high-precision. High-precision implies that the repairs
performed by My, are accurate, and thus, the predictions cor-
respond to true errors. This approach enables us to obtain
noisy training data that correspond to good samples from
the distribution of errors in D. We do not require this simple
prediction model to have high recall, since we are only after
producing example errors, not repairing the whole data set.
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We obtain a simple high-precision data repairing model by
training a Naive Bayes model over Dataset D. Specifically, we
iterate over each cell in D, pretend that its value is missing
and leverage the values of other attributes in the tuple to form
a Naive Bays model that we use to impute the value of the
cell. The predicted value corresponds to the suggested repair
for this cell. Effectively, this model takes into account value
co-occurrence across attributes. Similar models have been
proposed in the literature to form sets of potential repairs
for noisy cells [55]. To ensure high precision, we only accept
only repairs with a likelihood more than 90%. In Section 6,
we evaluate our Naive Bayes-based model and show that it
achieves reasonable precision (i.e., above 70%).

5.5 Data Augmentation

To perform data augmentation, we leverage the learned ®
and IT and use the generative model described in Section 5.1.
Our approach is outlined in Algorithm 4: First, we sample
a correct example with cell value v from the training data
T. Second, we sample a transformation ¢ from distribution
I1[v]. If ¢ can be applied in multiple positions or substrings of
input v we choose one uniformly at random, and finally, com-
pute the transformed value v’ = ¢(v). Value v’ corresponds
to an error as we do not consider the identity transformation.
Finally, we add (v, v’) in the set of augmented examples with
probability a. Probability « is a hyper-parameter of our algo-
rithm, which intuitively corresponds to the required balance
in the overall training data. We set « via cross-validation
over a holdout-set that corresponds to a subset of T. This is
the same holdout-set used to perform Platt scaling during
error classification (see Section 4.2).

Algorithm 4: Data Augmentation

Input: Training set T; Transformations ®; Approximate Policy
IT; Probability « (hyper-parameter)
Output: Set Ty of augmented examples
1 Ty « 0;
2 T, « set of correct examples in T}
3 p < number of correct examples in T;
4 n < number of erroneous examples in T}
5 /* we assume that p >> n due to imbalance */ ;
¢ while |Ty| <p—ndo
7 Draw a correct example v ~ Uni form(T¢);
8 C « Flip a coin with probability «;
9 if C = True and I1(v) # 0 then

10 Draw a transformation ¢ ~ (v);
1 v — ¢(v);

12 Ty « Ty U {(v,v")}

13 end

14 end
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Table 1: Datasets used in our experiments.

Dataset Size Attributes | Labeled Data | Errors (# of cells)
Hospital 1,000 19 1,000 504
Food 170,945 15 3,000 1,208
Soccer 200,000 10 200,000 31,296
Adult 97,684 11 97,684 1,062
Animal 60,575 14 60,575 8,077

6 EXPERIMENTS

We compare our approach against a wide-variety of error
detection methods on diverse datasets. The main points we
seek to validate are: (1) is weak supervision the key to high-
quality (i.e., high-precision and high-recall) error detection
models, (2) what is the impact of different representation
contexts on error detection, (3) is data augmentation the
right approach to minimizing human exhaust. We also per-
form extensive micro-benchmark experiments to examine
the effectiveness and sensitivity of data augmentation.

6.1 Experimental Setup
We describe the dataset, metrics, and settings we use.

Datasets: We use five datasets from a diverse array of do-
mains. Table 1 provides information for these datasets. As
shown the datasets span different sizes and exhibit various
amounts of errors: (1) The Hospital dataset is a benchmark
dataset used in several data cleaning papers [12, 55]. Errors
are artificially introduced by injecting typos. This is an easy
benchmark dataset; (2) The Food dataset contains informa-
tion on food establishments in Chicago. Errors correspond to
conflicting zip codes for the same establishment, conflicting
inspection results for the same establishment on the same
day, conflicting facility types for the same establishment and
many more. Ground truth was obtained by manually label-
ing 3,000 tuples; (3) The Soccer dataset provides information
about soccer players and their teams. The dataset and its
ground truth are provided by Rammerlaere and Geerts [49];
(4) Adult contains census data is a typical dataset from the
UCI repository. Adult is also provided by Rammerlaere and
Geerts [49]; (5) Animal was provided by scientists at UC
Berkeley and has been used by Abedjan et al. [2] as a testbed
for error detection. It provides information about the capture
of animals, including the time and location of the capture
and other information for each captured animal. The dataset
comes with manually curated ground truth. The datasets
used in our experiments exhibit different error distributions.
Hospital contains only typos, Soccer [49] and Adult [49] have
errors that were introduced with BART [4]: Adult has 70%
typos and 30% value swaps, and Soccer has 76% typos and
24% swaps. Finally, the two datasets with real-world errors
have the following error distributions: Food has 24% typos
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and 76% value swaps (based on the sampled ground truth);
Animal has 51% typos and 49% swaps.

Methods: We compare our approach, referred to as AUG,
against several competing error detection methods. First, we
consider three baseline error detection models:

e Constraint Violations (CV): This method identifies
errors by leveraging violations of denial constraints. It
is a proxy for rule-based errors detection methods [12].

e HoloClean (HC): This method combines CV with
HoloClean [55], a state-of-the-art data repairing en-
gine. This method aims to improve the precision of
the CV detector by considering as errors not all cells
in tuples that participate in constraint violations but
only those cells whose value was repaired (i.e., their
initial value is changed to a different value).

e Outlier Detection (OD): This method follows a cor-
relation based outlier detection approach. Given a cell
that corresponds to an attribute A;, the method con-
siders all correlated attributes in A \ A; with A; rely
on the pair-wise conditional distributions to detect if
the value of a cell corresponds to an outlier.

e Forbidden Item Sets (FBI): This method captures un-
likely value co-occurrences in noisy data [50]. At its
core, this method leverages the lift measure from asso-
ciation rule mining to identify how probably a value
co-occurrence is, and uses this measure to identify
erroneous cell values.

e Logistic Regression (LR): This method corresponds
to a supervised logistic regression model that classi-
fies cells are erroneous or correct. The features of this
model correspond to pairwise co-occurrence statis-
tics of attribute values and constraint violations. This
model corresponds to a simple supervised ensemble
over the previous two models.

We also consider three variants of our model where we use
different training paradigms. The goal is to compare data aug-
mentation against other types of training. For all variations,
we use the representation Q and the classifier M introduced
in Section 3. We consider the following variants:

e Supervised Learning (SuperL): We train our model
using only the training examples in T.

o Semi-supervised Learning (SemiL): We train our
model using self-training [64]. First supervised learn-
ing used to train the model on the labeled data only.
The learned model is then applied to the entire dataset
to generate more labeled examples as input for a subse-
quent round of supervised learning. Only labels with
high confidence are added at each step.

e Active Learning (ActiveL): We train our model us-
ing an active learning method based on uncertainty
sampling [57]. First, supervised learning is used to
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Table 2: Precision, Recall and F;-score of different methods for different datasets. AL results correspond to k = 100.
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Dataset
(T size) M ‘ AUG ‘ Ccv HC OD FBI LR SuperL  SemilL  ActiveL
Hospital P 0.903 0.030  0.947 0.640 0.008 0.0 0.0 0.0 0.960
0.989 0.372  0.353 0.667 0.001 0.0 0.0 0.0 0.613
(10%) F; 0.944 | 0.055 0.514 0.653 0.003 0.0 0.0 0.0 0.748
Food P 0.972 0.0 0.0 0.240 0.0 0.0 0.985 0.813 0.990
(5%) R 0.939 0.0 0.0 0.99 0.0 0.0 0.95 0.66 0.91
Fy 0.955 0.0 0.0 0.387 0.0 0.0 0.948 0.657 0.948
Soccer 0.922 0.039  0.032 0.999 0.0 0.721 0.802 n/a® 0.843
(5%) R 1.0 0.846  0.632 0.051 0.00 0.084 0.450 n/a 0.683
Fy 0.959 | 0.074 0.061 0.097 0.00 0.152 0.577 n/a 0.755
Adult P 0.994 0.497  0.893 0.999 0.990 0.051 0.999 n/a 0.994
(5%) R 0.987 0.998  0.392 0.001 0.254  0.072 0.350 n/a 0.982
F; 0.991 | 0.664 0.545 0.002 0.405  0.059 0.519 n/a 0.988
. 0.832 0.0 0.0 0.85 0.0 0.185 0.919 n/a 0.832
Animal s
(5%) 0.913 0.0 0.0 6 X 10_4 0.0 0.028 0.231 n/a 0.740
Fy 0.871 0.0 0.0 1x10 0.0 0.048 0.369 n/a 0.783

# n/a = Semi-supervised learning did not terminate after two days.

train the model. At each subsequent round, we use
an uncertainty-based selection scheme to obtain addi-
tional training examples and re-train the model. We
use k to denote the number of iterations. In our imple-
mentation, we set the upper limit of labeled examples
obtained per iteration to be 50 cells.

Evaluation Setup: To measure accuracy, we use Precision
(P) defined as the fraction of error predictions that are correct;
Recall (R) defined as the fraction of true error being predicted
as errors by the different methods; and F; defined as 2PR/(P+
R). For training, we split the available ground truth into three
disjoint sets: (1) a training set T, from which 10% is always
kept as a hold-out set used for hyper parameter tuning; (2) a
sampling set, which is used to obtain additional labels for
active learning; and (3) a test set, which is used for evaluation.
To evaluate different dataset splits, we perform 10 runs with
different random seeds for each experiment. To ensure that
we maintain the coupling amongst Precision, Recall, and Fj,
we report the median performance. The mean performance
along with standard error measurements are reported in
the Appendix. Seeds are sampled at the beginning of each
experiment, and hence, a different set of random seeds can
be used for different experiments. We use ADAM [36] as the
optimization algorithm for all learning-based model and train
all models for 500 epochs with a batch-size of five examples.
We run Platt Scaling for 100 epochs. All experiments were
executed on a 12-core Intel(R) Xeon(R) CPU E5-2603 v3 @
1.60GHz with 64GB of RAM running Ubuntu 14.04.3 LTS.

6.2 End-to-end Performance

We evaluate the performance of our approach and competing
approaches on detecting errors in all five datasets. Table 2
summarizes the precision, recall, and F;-score obtained by
different methods. For Food, Soccer, Adult, and Animal we

set the amount of training data to be 5% of the total dataset.
For Hospital we set the percentage of training data to be
10% (corresponding to 100 tuples) since Hospital is small. For
Active Learning we set the number of active learning loops
to k = 100 to maximize performance.

As Table 2 shows, our method consistently outperforms all
methods, and in some cases, like Hospital and Soccer, we see
improvements of 20 F; points. More importantly, we find that
our method is able to achieve both high recall and high pre-
cision in all datasets despite the different error distribution
in each dataset. This is something that has been particularly
challenging for prior error detection methods. We see that
for Food and Animal, despite the fact that most errors do not
correspond to constraint violations (as implied by the per-
formance of CV), AUG can obtain high precision and recall.
This is because AUG models the actual data distribution and
not the side-effects of errors. For instance, for Food we see
that OD can detect many of the errors—it has high recall—
indicating that most errors correspond to statistical outliers.
We see that AUG can successfully solve error detection for
this dataset. Overall, our method achieves an average preci-
sion of 92% and an average recall of 96% across these diverse
datasets. At the same time, we see that the performance of
competing methods varies significantly across datasets. This
validates the findings of prior work [2] that depending on
the side effects of errors different error detection methods
are more suitable for different datasets.

We now discuss the performance of individual competing
methods. For CV, we see that it achieves higher recall than
precision. This performance is due to the fact that CV marks
as erroneous all cells in a group of cells that participate in a
violation. More emphasis should be put on the recall-related
results of CV. As shown its recall varies dramatically from
0.0 for Food and Animal to 0.998 for Adult. For OD, we see
that it achieves relatively high-precision results, but its recall
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Figure 3: Ablation studies to evaluate the effect of different representation models.

is low. Similar performance is exhibited by FBI that leverages
a different measure for outlier detection. We see that FBI
achieves high precision when the forbidden item sets have
significant support (i.e., occur relatively often). However,
FBI cannot detect errors that lead to outlier values which
occur a limited number of times. This is why we find OD to
outperform FBI in several cases.

Using HC as a detection tool is limited to these cells violat-
ing integrity constraints. Hence, using HC leads to improved
precision over CV (see Hospital and Adult). This result is
expected as data repairing limits the number of cells detected
as erroneous to only those whose values are altered. Our
results also validate the fact that HC depends heavily on the
quality of the error detection used [55]. As shown in Food
and Animal, the performance of HC is limited by the recall
of CV, i.e., since CV did not detect errors accurately, HC does
not have the necessary training data to learn how to repair
cells. At the same time, Soccer reveals that training HC on
few clean cells—the recall of CV is very high while the preci-
sion is very low indicating that most cells were marked as
erroneous—leads to low precision (HC achieves a precision
of 0.032 for Soccer). This validates our approach of solving
error detection separately from data repairing.

We also see that LR has consistently poor performance.
This result reveals that combining co-occurrence features
and violations features in a linear way (i.e., via a weighted
linear combination such as in LR) is not enough to capture
the complex statistics of the dataset. This validates our choice
of using representation learning and not engineered features.

Finally, we see that approaches that rely on representation
learning model achieve consistently high precision across
all datasets. This validates our hypothesis that modeling
the distribution of both correct and erroneous data allows
us to discriminate better. However, we see that when we
rely only on the training dataset T the recall is limited (see

the recall for SuperL). The limited labeled examples in T is
not sufficient to capture the heterogeneity of errors. Given
additional training examples either via Active Learning or
via Data Augmentation helps improve the recall. However,
Data Augmentation is more effective than Active Learning
at capturing the heterogeneity of errors in each dataset, and
hence, achieves superior recall to Active Learning in all cases.
Takeaway: The combination of representation learning tech-
niques with data augmentation is key to obtaining high-
quality error detection models.

6.3 Representation Ablation Study

We perform an ablation study to evaluate the effect of dif-
ferent representation models on the quality of our model.
Specifically, we compare the performance of AUG when all
representation models are used in Q versus variants of AUG
where one model is removed at a time. We report the F;-
score of the different variants as well as the original AUG in
Figure 3. Representation models that correspond to different
contexts are grouped together.

Removing any feature has an impact on the quality of
predictions of our model. We find that removing a single rep-
resentation model results in drops of up to 9 F; points across
datasets. More importantly, we find that different represen-
tation models have different impact on different datasets.
For instance, the biggest drop for Hospital and Soccer is
achieved when the character-sequence model is removed
while for Adult the highest drop is achieved when the Neigh-
borhood representation is removed. This validates our design
of considering representation models from different contexts.
Takeaway: It is necessary to leverage cell representations
that are informed by different contexts to provide robust and
high-quality error detection solutions.
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6.4 Augmentation versus Active Learning

We validate the hypothesis that data augmentation is more
effective than active learning in minimizing human effort
in training error detection models. In Table 2, we showed
that data augmentation outperforms active learning. Further-
more, active learning needs to obtain more labeled examples
to achieve comparable performance to data augmentation.
In the next two experiments, we examine the performance
of the two approach as we limit their access to training data.
In the first experiment, we evaluate active learning for
different values of loops (k) over Hospital, Soccer, and Adult.
We vary k in {5, 10, 20, 100}. We fix the amount of available
training data to 5%. Each time we measure the F; score of the
two algorithms. We report our results in Figure 4. Reported
results correspond to median performance over ten runs.
We see that when a small number of loops is used (k=5),
there is a significant gap between the two algorithms that
ranges between 10 and 70 F; points. Active learning achieves
comparable performance with data augmentation only after
100 loops. This corresponds to an additional 5,000 (k X 50)
labeled examples (labeled cells). This behavior is consistent
across all three datasets. In the second experiment, we seek
to push data augmentation to the limits. Specifically, we seek
to answer the question, can data augmentation be effective
when the number of labeled examples in T is extremely small.

Table 3: A comparison between data augmentation
and resampling. We report the F;-score as we increase
the size of the training data T. We also include super-
vised learning as a baseline.

Dataset  Size of T ‘ AUG Resampling SuperL
1% 0.840 0.041 0.0
Hospital 5% 0.873 0.278 0.0
10% 0.925 0.476 0.079
1% 0.927 0.125 0.577
Soccer 5% 0.935 0.208 0.654
10% 0.953 0.361 0.675
1% 0.844 0.063 0.0
Adult 5% 0.953 0.068 0.294
10% 0.975 0.132 0.519

To this end, we evaluate the performance of our system on
Hospital, Soccer, and Adult as we vary the size of the train-
ing data in {0.5%, 1%, 5%, 10%}. The results are shown in
Figure 5. As expected the performance of data augmenta-
tion is improving as more training data become available.
However, we see that data augmentation can achieve good
performance—F; score does not drop below 70%—even in
cases where labeled examples T are limited. These results
provide positive evidence that data augmentation is a viable
approach for minimizing user exhaust.

Takeaway: Our data augmentation approach is preferable
to active learning for minimizing human exhaust.

6.5 Augmentation and Data Imbalance

We evaluate the effectiveness of data augmentation to coun-
teract imbalance. Table 2 shows that using data augmentation
yields high-quality error detection models for datasets with
varying percentages of errors. Hence, data augmentation is
robust to different levels of imbalance; each dataset in Table 2
has a different ratio of true errors to correct cells.

In Table 3, we compare data augmentation with traditional
methods used to solve the imbalance problem, namely, re-
sampling. In all the datasets, resampling had low precision
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Figure 6: The effect of increasing the number of examples that correspond to errors via data augmentation.

and recall confirming our hypothesis discussed in Section 1:
due to the heterogeneity of the errors, resampling from the
limited number of negative examples was not enough to
cover all types of errors. The best result for resampling was
obtained in the Hospital data set (F; about 47%), since errors
are more homogeneous than other data sets.

We also evaluate the effect of excessive data augmentation:
In Algorithm 4 we do not use hyper-parameter « to control
how many artificial examples should be generated via data
augmentation. We manually set the ratio between positive
and negative examples in the final training examples and
use augmentation to materialize this ratio.

Our results are reported in Figure 6. We show that in-
creasing the number of generated negative examples (errors)
results in a lower accuracy as the balance between errors
and correct example goes greater than 50%, as the model suf-
fers from the imbalance problem again, this time as too few
correct examples. We see that peak performance is achieved
when the training data is almost balanced for all datasets.
This reveals the robustness of our approach. Nonetheless,
peak performance is not achieved exactly at a 50-50 balance
(peak performance for Adult is at 60%). This justifies our
model for data augmentation presented in Algorithm 4 and
the use of hyper-parameter a.

Takeaway: Data augmentation is an effective way to coun-
teract imbalance in error detection.

6.6 Analysis of Augmentation Learning

In this experiment, we validate the importance of learn-
ing the augmentation model (the transformations ®, and
the policy II). We compare three augmentation strategies:
(1) Random transformations Rand. Trans., where we ran-
domly choose from a set of errors (e.g., typos, attribute value
changes, attribute shifts, etc.). Here, we augment the data by
using completely random transformations not inspired by
the erroneous examples or the data; and (2) learned transfor-
mation @, but without learning the distribution policy(Aug
w/o Policy). Given an input, we find all valid transformations

Table 4: A comparison between different data augmen-
tation approaches. We report the F;-score as we in-
crease the size of the training data T.

Dataset T [ AUG Rand. Trans. AUG w/o Policy
5% 0.911 0.873 0.866
Hospital 10% | 0.943 0.884 0.870
5% 0.946 0.212 0.517
Soccer 10% | 0.953 0.166 0.522
5% 0.977 0.789 0.754
Adult 10% | 0.984 0.817 0.747

in ® and pick one uniformly at random. Table 4 shows the
results for the three approaches. AUG outperforms the other
two strategies. Rand. Trans. fails to capture the errors that
exist in the dataset. For instance, it obtains a recall of 16.6%
for Soccer. Even though the transformations are learned from
the data, it is the results show that using these transforma-
tions in a way that conform with the distribution of the data
is crucial in learning an accurate classifier.

Takeaway: Learning a noisy channel model from the data,
i.e., a set of transformations ® and a policy II is key to ob-
taining high-quality predictions.

6.7 Other Experiments

Finally, we report several benchmarking results: (1) we mea-
sure the runtime of different methods, (2) validate the per-
formance of our unsupervised Naive Bayes model for gen-
erating labeled example to learn transformations ¢ and II
(see Section 5.5), and (3) validate the robustness of AUG to
misspecified denial constraints.

The median runtime of different methods is reported in
Table 5. These runtimes correspond to prototype implemen-
tations of the different methods in Python. Also recall, that
training corresponds to 500 epochs with low batch-size as re-
ported in Section 6.1. As expected iterative methods such as
SemilL and ActiveL are significantly slower than non-iterative
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Table 5: Runtimes in seconds. Value n/a means that the
method did not terminate after running for two days.

Approach | Hospital Soccer Adult

AUG 749.17 7684.72 6332.13

Cv 204.62 1610.02 1359.46

OD 212.7 1588.06 1423.69

LR 347.95 3505.60 4408.27

SuperL 648.34 3928.46 3310.71

SemiL 14985.15 n/a n/a

ActiveL 3836.15  56535.19 128132.56

Table 6: Performance of our weak supervision method
for generating training examples for AUG.

Dataset | Precision Recall

Hospital 0.895 0.636
Soccer 0.999 0.053
Adult 0.714 0.973

ones. Overall, we see that AUG exhibits runtimes that are of
the same order of magnitude as supervised methods.

The performance of our Naive Bayes-based weak super-
vision method on Hospital, Soccer, and Adult is reported in
Table 6. Specifically, we seek to validate that the precision
of our weak supervision method is reasonable, and thus, by
using it we obtain good examples that correspond to good
examples from the true error distribution. We see that our
weak supervision method achieves a precision of more than
70% in all cases. As expected its recall can be some times low
(e.g., for Soccer it is 5.3%) as emphasis is put on precision.

Finally, we evaluate AUG against missing and noisy con-
straints. The detailed results are presented in Appendix A.2
due to space restrictions. In summary, we find AUG to exhibit
a drop of at most 6 F; points when only 20% of the original
constraints are used to missing constraints and at most 8 F;
points when noisy constraints are used.

7 RELATED WORK

Many algorithms and prototypes have been proposed for
developing data cleaning tools [17, 20, 31, 48]. Outlier de-
tection and quantitative data cleaning algorithms are af-
ter data values that looks “abnormal” with respect to the
data distribution [16, 47, 61]. Entity resolution and record
de-duplication focus on identifying clusters of records that
represent the same real-world entity [18, 43]. Example de-
duplication tools include the Data Tamer system [59], which
is commercialized as Tamr. Rule-based detection propos-
als [1, 12, 21, 37, 60] use integrity constraints (e.g., denial
constraints) to identify violations, and use the overlap among
these violations to detect data errors. Prototypes such as such

Heidari, McGrath, llyas, and Rekatsinas

as Nadeef [15], and BigDansing [34] are example extensible
rule-based cleaning systems. There have been also multi-
ple proposals that identify data cells that don not follow
a data “pattern”. Example tools include OpenRefine, Data
Wrangler [33] and its commercial descendant Trifacta,
Katara [13], and DataXFormer [3]. An overview of these
tools and how they can be combined for error detection is
discussed in [2], where the authors show that even when all
are used, these tools often achieve low recall in capturing
data errors in real data sets.

Data Augmentation has also been used extensively in ma-
chine learning problems. Most state-of-the-art image clas-
sification pipelines use some limited for of data augmenta-
tion [45]. This consists of applying crops, flips, or small affine
transformations in fixed order or at random. Other studies
have applied heuristic data augmentation to modalities such
as audio [42] and text [39]. To our knowledge, we are the
first to apply data augmentation in relational data.

Recently, several lines of work have explored the use of
reinforcement learning or random search to learn more prin-
cipled data augmentation policies [14, 53]. Our work here
is different as we do not rely on expensive procedures to
learn the augmentation policies. This is because we limit our
policies to applying a single transformation at a time. Finally,
recent work has explored techniques based on Generative
Adversarial Networks [23] to learn data generation models
used for data augmentation from unlabeled data [41]. This
work focuses mostly on image data. Exploring this direction
for relational data is an exciting future direction.

8 CONCLUSIONS

We introduced a few-shot learning error detection frame-
work. We adopt a noisy channel model to capture how both
correct data and errors are generated use it to develop an
expressive classifier that can predict, with high accuracy,
whether a cell in the data is an error. To capture the hetero-
geneity of data distributions, we learn a rich set of represen-
tations at various granularities (attribute-level, record-level,
and the dataset-level). We also showed how to address a main
hurdle in this approach, which is the scarcity of error ex-
amples in the training data, and we introduced an approach
based on data augmentation to generate enough examples of
data errors. Our data augmentation approach learns a set of
transformations and the probability distribution over these
transformations from a small set of examples (or in a com-
pletely unsupervised way). We showed that our approach
achieved an average precision of ~94% and an average recall
of ~93% across a diverse array of datasets. We also showed
how our approach outperforms previous techniques rang-
ing from traditional rule-based methods to more complex
ML-based method such as active learning approaches.
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A APPENDIX

We provide additional details for the representation models
in our framework and present additional micro-benchmark
experimental results on the robustness of our error detection
approach to noisy denial constraints.

A.1 Details on Representation Models

Our model follows the wide and deep architecture of Cheng
et al. [9]. Thus the model can be thought of as a represen-
tation stage, where each feature is being operated on in
isolation, and an inference step in which each feature has
been concatenated to make a joint representation. The joint
representation is then fed through a two-layer neural net-
work. At training time, we backpropogate through the entire
network jointly, rather than training specific representations.
Figure 7 illustrates this model’s topology.

A summary of representation models used in our approach
along with their dimensions is provided in Table 7. As shown
we use a variety of models that capture all three attribute-
level, tuple-level, and dataset-level contexts. We next discuss
the embedding-based models and format models we use.

Embedding-based Models: We treat different views of the
data as expressing different language models, and so embed
each to capture their semantics. The embeddings are taken
at a character, cell and tuple level tokens, and each uses a
FastText Embedding in 50 dimensions [7, 32]. Rather than
doing inference directly on the embeddings, we employ a
two-step process of a non-linear transformation and dimen-
sionality reduction. At the non-linear transformation stage,
we use a two-layer Highway Network [58] to extract useful
representations of the data. Then, a dense layer is used to
reduce the dimensionality to a single dimension. In this way,
the embeddings do not dominate the joint representation.
Figure 2(B) shows this module more explicitly.

In addition to using these singular embeddings, we also
use a distance metric on the learned corpus as a signal to be
fed into the model (see Neighborhood representation). The
intuition behind this representation is that in the presence of
other signals that would imply a cell is erroneous, there may
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Table 7: A summary of representation models used in our approach along with their dimension.

Context [ Representation Type [ Description Dimension
Character Embedding FastText Embedding where tokens are characters 1
Word Embedding FastText Embedding where tokens are words in the cell 1
Attribute-Level Format models 3-Gram: Frequency of the least frequent 3-gram in the cell 1
Format models Symbolic 3-Gram; each character is replaced by a token {Char, Num, Sym} 1
Empirical distribution model Frequency of cell value 1
Empirical distribution model One Hot Column ID; Captures per-column bias 1

Tuple-Level Co-occurrence model

Co-occurrence statistics for a cell’s value

#attributes -1

Tuple representation FasText-based embedding of the union of tokens after tokenizing each attribute value 1
Dataset-Level Constraint violations Number of violations per denial constraint #constraints
Neighborhood representation | Distance to top-1 similar word using a FastText tuple embedding over the non-tokenized attribute values 1

Feature 2

Linear Layer —> Linear Layer —>

Feature N

Figure 7: The architecture of our representation learn-
ing model following a wide and deep architecture.

be some similar cell in the dataset with the correct value;
hence, the distance to it will be low. For this, we simply take
the minimum distance to another embedding in our corpus,
and this distance is fed to the joint representation.

Forma Models (3-Grams): We follow a similar approach
to that of Huang and He [30]. This work introduces custom
language models to do outlier detection. We follow a sim-
plified variation of this approach and use two fixed length
language models. They correspond to the 3-Gram models
shown in Table 7. To build these representation models, we
build a distribution of 3-Grams present in each column, this is
done using the empirical distribution of the data and Laplace
smoothing. For 3-Gram, the distribution is based on all pos-
sible ASCII 3-Grams. The difference in the symbol based
variation of 3-Gram is that the distribution is based off the
alphabet {Charcater, Number, Symbol}. The value returned
for each model is the least frequency of all 3-grams present
in the cell value.

A.2 Effect of Misspecified Constraints

We conduct a series of micro-benchmark experiments to
evaluate the robustness of AUG against misspecified denial
constraints. First, we evaluate AUG’s performance as only
a subset of constraints is given as input, and second, we
evaluate AUG’s performance as constraints become noisy.

A.2.1 Limiting the number of Constraints. We consider Hos-
pital, Adult, and Soccer with the denial constraints used for

our experiments in Section 6 and perform the following ex-
periment: For each dataset, we define a vary the number of
constraints given as input to AUG by taking only a propor-
tion p of the initial constraints. We vary p in {0.2,0.4, 0.6,
0.8,1.0} where 0.2 indicates that a random subset of 20% of
the constraints is used while 1.0 indicates that all constraints
are used. For each configuration for p we obtain 21 sam-
ples of the constraints and evaluate AUG for these random
subsets. We report the median F;, precision, and recall in
Table 8. As shown, AUGs performance gradually decreases
as the number of denial constraints is reduced and converges
to the performance reported in the study in Section 6.3 when
no constraints are used in AUG. The results in Table 8 also
show that AUG is robust to small variations in the number
of constraints provided as input. We see that when p > 0.4
the F; score of AUG does not reduce more than two points.

Table 8: Median performance of AUG over 21 runs as
we randomly limit the input constraints to p X |initial
constraints|.

Dataset M | p=0.2 p=04 p=06 p=08 p=1
P 0.857 0.829 0.927 0.925 0.936

Hospital R 0.848 0.877 0.857 0.896 0.901
F 0.852 0.852 0.891 0.910 0.918

P 0.860 0.890 0.897 0.917 0.934

Adult R 0.994 0.992 0.999 0.999 0.999
Fy 0.922 0.938 0.945 0.956 0.965

P 0.836 0.855 0.864 0.860 0.863

Soccer R 0.868 0.879 0.872 0.887 0.894
F 0.852 0.867 0.868 0.873 0.878

A.2.2  Noisy Denial Constraints. We now turn our attention
to noisy constraints. We use the following definition of noisy
constraints:

Definition A.1. The denial constraint dc is a-noisy on the
dataset D if it satisfies a percent of all tuple pairs in D.

We want to see the effect of noisy denial constraints on the
performance of AUG. We use the following strategy to iden-
tify noisy denial constraints for each dataset: We use the de-
nial constraint discovery method of Chu et al. [11] and group
the discovered constraints in four ranges with respect to the
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Top-10 Entries for
M(‘R’) in Animal
This column can only take
values R, O, and Empty

-> Empty: 0.477337556212
->  0: 0.380031693159
-> 200: 0.037717907828
->  20: 0.028843105986
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R
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Figure 8: Examples of learned augmentation policies for clean entries in Hospital and Adult.

Table 9: Median performance of AUG over 21 runs
with noisy constraints that correspond to different
noise levels a.

Dataset M | a €(0.55,0.65] (0.65,0.75]  (0.75,0.85]  (0.85, 0.95]
P 0.859 0.876 0.912 0.925
Hospital R 0.822 0.869 0.899 0.914
Fi 0.840 0.873 0.906 0.920
P 0.911 0.949 0.961 0.984
Adult R 0.875 0.930 0.952 0.961
Fy 0.893 0.939 0.956 0.972
P 0.821 0.849 0.867 0.863
Soccer R 0.864 0.862 0.880 0.891
F 0.842 0.855 0.873 0.877

noise level a. Constraints with a € (0.55, 0.65], constraints
with a € (0.65,0.75], constraints with « € (0.75,0.85], and
constraints with @ € (0.85,0.95]. For each range, we ob-
tain 21 constraint-set samples, such that each sampled con-
straint set has the same cardinality as the original clean
constraints associated with each of the Hospital, Adult, and
Soccer datasets. We report the median performance of AUG
in Table 9. As shown, the impact of noisy denial constraints
on AUG’s performance is not significant. The reason is that
during training AUG can identify that the representation
associated with denial constraints corresponds to a noisy
feature and thus reduce its weight in the final classifier.

A.3 Learned Augmentation Policies

We provide examples of learned policies for clean entries
in Hospital, Adult, and Animal. For Hospital and Adult, we
know how errors were introduced, and hence, can evaluate
the performance of our methods for learning augmentation
policies. Errors in Hospital correspond to typos introduced
artificially by swapping a character in the clean cell values
with the character ‘x’. On the other hand, errors in the gender

attribute of Adult are introduced either by swapping the two
gender values ‘Female’ and ‘Male’ or by introducing typos
via injection of characters. For Animal, we do not know how
errors are introduced. However, we focus on an attribute
that can only take values in {R, O, Empty} to evaluate the
performance of our methods.

Figure 8 depicts the top-10 entries in the conditional dis-
tribution corresponding to entry ‘scip-inf-4’ for Hospital and
entry ‘Female’ for Adult. As shown, for Hospital, almost all
transformations learned by our method correspond to ei-
ther swapping a character a character with the character x’
or injecting ‘x’ in the original string. The performance of
our approach is similar for Adult. We observe that a mix of
value swaps, e.g., ‘Female’ — ‘Male’, and character injection
transformations are learned. Finally, for Animal, we see that
most of the mass of the conditional distribution (almost 86%)
is concentrated in the value swap transformations ‘R’ +—
‘Empty’ and ‘R’ — ‘O’ while all other transformations have
negligible probabilities. These results demonstrate that our
methods can effectively learn how errors are introduced and
distributed in noisy relational datasets.
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